3.3.81 \(\int \frac {(c-c \sin (e+f x))^3}{(a+a \sin (e+f x))^3} \, dx\) [281]

Optimal. Leaf size=103 \[ -\frac {c^3 x}{a^3}-\frac {2 a^2 c^3 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}+\frac {2 c^3 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}-\frac {2 c^3 \cos (e+f x)}{f \left (a^3+a^3 \sin (e+f x)\right )} \]

[Out]

-c^3*x/a^3-2/5*a^2*c^3*cos(f*x+e)^5/f/(a+a*sin(f*x+e))^5+2/3*c^3*cos(f*x+e)^3/f/(a+a*sin(f*x+e))^3-2*c^3*cos(f
*x+e)/f/(a^3+a^3*sin(f*x+e))

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {2815, 2759, 8} \begin {gather*} -\frac {2 c^3 \cos (e+f x)}{f \left (a^3 \sin (e+f x)+a^3\right )}-\frac {c^3 x}{a^3}-\frac {2 a^2 c^3 \cos ^5(e+f x)}{5 f (a \sin (e+f x)+a)^5}+\frac {2 c^3 \cos ^3(e+f x)}{3 f (a \sin (e+f x)+a)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c - c*Sin[e + f*x])^3/(a + a*Sin[e + f*x])^3,x]

[Out]

-((c^3*x)/a^3) - (2*a^2*c^3*Cos[e + f*x]^5)/(5*f*(a + a*Sin[e + f*x])^5) + (2*c^3*Cos[e + f*x]^3)/(3*f*(a + a*
Sin[e + f*x])^3) - (2*c^3*Cos[e + f*x])/(f*(a^3 + a^3*Sin[e + f*x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2759

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[2*g*(g
*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(2*m +
p + 1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int \frac {(c-c \sin (e+f x))^3}{(a+a \sin (e+f x))^3} \, dx &=\left (a^3 c^3\right ) \int \frac {\cos ^6(e+f x)}{(a+a \sin (e+f x))^6} \, dx\\ &=-\frac {2 a^2 c^3 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}-\left (a c^3\right ) \int \frac {\cos ^4(e+f x)}{(a+a \sin (e+f x))^4} \, dx\\ &=-\frac {2 a^2 c^3 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}+\frac {2 c^3 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}+\frac {c^3 \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^2} \, dx}{a}\\ &=-\frac {2 a^2 c^3 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}+\frac {2 c^3 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}-\frac {2 c^3 \cos (e+f x)}{f \left (a^3+a^3 \sin (e+f x)\right )}-\frac {c^3 \int 1 \, dx}{a^3}\\ &=-\frac {c^3 x}{a^3}-\frac {2 a^2 c^3 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}+\frac {2 c^3 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}-\frac {2 c^3 \cos (e+f x)}{f \left (a^3+a^3 \sin (e+f x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(239\) vs. \(2(103)=206\).
time = 0.29, size = 239, normalized size = 2.32 \begin {gather*} \frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (48 \sin \left (\frac {1}{2} (e+f x)\right )-24 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )-88 \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+44 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3+92 \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^4-15 (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5\right ) (c-c \sin (e+f x))^3}{15 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^6 (a+a \sin (e+f x))^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sin[e + f*x])^3/(a + a*Sin[e + f*x])^3,x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(48*Sin[(e + f*x)/2] - 24*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]) - 88*Si
n[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + 44*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3 + 92*Sin[(
e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^4 - 15*(e + f*x)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5)*(c
 - c*Sin[e + f*x])^3)/(15*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^6*(a + a*Sin[e + f*x])^3)

________________________________________________________________________________________

Maple [A]
time = 0.38, size = 100, normalized size = 0.97

method result size
risch \(-\frac {c^{3} x}{a^{3}}-\frac {4 \left (90 i c^{3} {\mathrm e}^{3 i \left (f x +e \right )}+45 c^{3} {\mathrm e}^{4 i \left (f x +e \right )}-70 i c^{3} {\mathrm e}^{i \left (f x +e \right )}-140 c^{3} {\mathrm e}^{2 i \left (f x +e \right )}+23 c^{3}\right )}{15 f \,a^{3} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{5}}\) \(97\)
derivativedivides \(\frac {2 c^{3} \left (-\arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {32}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{5}}+\frac {16}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{4}}-\frac {40}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {4}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {2}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{f \,a^{3}}\) \(100\)
default \(\frac {2 c^{3} \left (-\arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {32}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{5}}+\frac {16}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{4}}-\frac {40}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {4}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {2}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{f \,a^{3}}\) \(100\)
norman \(\frac {-\frac {4 c^{3} \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {8 c^{3} \left (\tan ^{9}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {48 c^{3} \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {c^{3} x}{a}-\frac {52 c^{3}}{15 a f}-\frac {5 c^{3} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a}-\frac {13 c^{3} x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {25 c^{3} x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {38 c^{3} x \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {46 c^{3} x \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {46 c^{3} x \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {38 c^{3} x \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {25 c^{3} x \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {13 c^{3} x \left (\tan ^{9}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {5 c^{3} x \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {c^{3} x \left (\tan ^{11}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}-\frac {40 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{3 a f}-\frac {64 c^{3} \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {112 c^{3} \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a f}-\frac {116 c^{3} \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a f}-\frac {472 c^{3} \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5 a f}-\frac {556 c^{3} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{15 a f}-\frac {1432 c^{3} \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{15 a f}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{3} a^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{5}}\) \(490\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sin(f*x+e))^3/(a+a*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

2/f*c^3/a^3*(-arctan(tan(1/2*f*x+1/2*e))-32/5/(tan(1/2*f*x+1/2*e)+1)^5+16/(tan(1/2*f*x+1/2*e)+1)^4-40/3/(tan(1
/2*f*x+1/2*e)+1)^3+4/(tan(1/2*f*x+1/2*e)+1)^2-2/(tan(1/2*f*x+1/2*e)+1))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 849 vs. \(2 (105) = 210\).
time = 0.55, size = 849, normalized size = 8.24 \begin {gather*} -\frac {2 \, {\left (c^{3} {\left (\frac {\frac {95 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {145 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {75 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {15 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + 22}{a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}} + \frac {15 \, \arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a^{3}}\right )} + \frac {c^{3} {\left (\frac {20 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {40 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {30 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {15 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + 7\right )}}{a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}} + \frac {6 \, c^{3} {\left (\frac {5 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}}{a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}} - \frac {9 \, c^{3} {\left (\frac {5 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {5 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {5 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + 1\right )}}{a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}}\right )}}{15 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^3/(a+a*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

-2/15*(c^3*((95*sin(f*x + e)/(cos(f*x + e) + 1) + 145*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 75*sin(f*x + e)^3/
(cos(f*x + e) + 1)^3 + 15*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 22)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) +
1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x +
 e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 15*arctan(sin(f*x + e)/(cos(f*x + e) +
 1))/a^3) + c^3*(20*sin(f*x + e)/(cos(f*x + e) + 1) + 40*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 30*sin(f*x + e)
^3/(cos(f*x + e) + 1)^3 + 15*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 7)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e)
+ 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x
 + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 6*c^3*(5*sin(f*x + e)/(cos(f*x + e)
+ 1) + 10*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) + 1) + 10*a^3*sin(f
*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x + e)^4/(cos(f*x +
e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) - 9*c^3*(5*sin(f*x + e)/(cos(f*x + e) + 1) + 5*sin(f*x +
e)^2/(cos(f*x + e) + 1)^2 + 5*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 1)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e)
 + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*
x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5))/f

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (105) = 210\).
time = 0.32, size = 245, normalized size = 2.38 \begin {gather*} \frac {60 \, c^{3} f x - {\left (15 \, c^{3} f x + 46 \, c^{3}\right )} \cos \left (f x + e\right )^{3} + 24 \, c^{3} - {\left (45 \, c^{3} f x - 2 \, c^{3}\right )} \cos \left (f x + e\right )^{2} + 6 \, {\left (5 \, c^{3} f x + 12 \, c^{3}\right )} \cos \left (f x + e\right ) + {\left (60 \, c^{3} f x - 24 \, c^{3} - {\left (15 \, c^{3} f x - 46 \, c^{3}\right )} \cos \left (f x + e\right )^{2} + 6 \, {\left (5 \, c^{3} f x + 8 \, c^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{15 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} + 3 \, a^{3} f \cos \left (f x + e\right )^{2} - 2 \, a^{3} f \cos \left (f x + e\right ) - 4 \, a^{3} f + {\left (a^{3} f \cos \left (f x + e\right )^{2} - 2 \, a^{3} f \cos \left (f x + e\right ) - 4 \, a^{3} f\right )} \sin \left (f x + e\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^3/(a+a*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

1/15*(60*c^3*f*x - (15*c^3*f*x + 46*c^3)*cos(f*x + e)^3 + 24*c^3 - (45*c^3*f*x - 2*c^3)*cos(f*x + e)^2 + 6*(5*
c^3*f*x + 12*c^3)*cos(f*x + e) + (60*c^3*f*x - 24*c^3 - (15*c^3*f*x - 46*c^3)*cos(f*x + e)^2 + 6*(5*c^3*f*x +
8*c^3)*cos(f*x + e))*sin(f*x + e))/(a^3*f*cos(f*x + e)^3 + 3*a^3*f*cos(f*x + e)^2 - 2*a^3*f*cos(f*x + e) - 4*a
^3*f + (a^3*f*cos(f*x + e)^2 - 2*a^3*f*cos(f*x + e) - 4*a^3*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 1284 vs. \(2 (95) = 190\).
time = 9.38, size = 1284, normalized size = 12.47 \begin {gather*} \begin {cases} - \frac {15 c^{3} f x \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {75 c^{3} f x \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {150 c^{3} f x \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {150 c^{3} f x \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {75 c^{3} f x \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {15 c^{3} f x}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {60 c^{3} \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {120 c^{3} \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {400 c^{3} \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {200 c^{3} \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} - \frac {52 c^{3}}{15 a^{3} f \tan ^{5}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan ^{4}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 150 a^{3} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 75 a^{3} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 15 a^{3} f} & \text {for}\: f \neq 0 \\\frac {x \left (- c \sin {\left (e \right )} + c\right )^{3}}{\left (a \sin {\left (e \right )} + a\right )^{3}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))**3/(a+a*sin(f*x+e))**3,x)

[Out]

Piecewise((-15*c**3*f*x*tan(e/2 + f*x/2)**5/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 1
50*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 75*
c**3*f*x*tan(e/2 + f*x/2)**4/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e
/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 150*c**3*f*x*tan(e
/2 + f*x/2)**3/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3
 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 150*c**3*f*x*tan(e/2 + f*x/2)**2
/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*
tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 75*c**3*f*x*tan(e/2 + f*x/2)/(15*a**3*f*tan(e/
2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**
2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 15*c**3*f*x/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 +
 f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15
*a**3*f) - 60*c**3*tan(e/2 + f*x/2)**4/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a*
*3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 120*c**3
*tan(e/2 + f*x/2)**3/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x
/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 400*c**3*tan(e/2 + f*x/2)*
*2/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*
f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 200*c**3*tan(e/2 + f*x/2)/(15*a**3*f*tan(e/2
 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2
 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3*f) - 52*c**3/(15*a**3*f*tan(e/2 + f*x/2)**5 + 75*a**3*f*tan(e/2 + f*x/
2)**4 + 150*a**3*f*tan(e/2 + f*x/2)**3 + 150*a**3*f*tan(e/2 + f*x/2)**2 + 75*a**3*f*tan(e/2 + f*x/2) + 15*a**3
*f), Ne(f, 0)), (x*(-c*sin(e) + c)**3/(a*sin(e) + a)**3, True))

________________________________________________________________________________________

Giac [A]
time = 0.50, size = 111, normalized size = 1.08 \begin {gather*} -\frac {\frac {15 \, {\left (f x + e\right )} c^{3}}{a^{3}} + \frac {4 \, {\left (15 \, c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 30 \, c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 100 \, c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 50 \, c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 13 \, c^{3}\right )}}{a^{3} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{5}}}{15 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^3/(a+a*sin(f*x+e))^3,x, algorithm="giac")

[Out]

-1/15*(15*(f*x + e)*c^3/a^3 + 4*(15*c^3*tan(1/2*f*x + 1/2*e)^4 + 30*c^3*tan(1/2*f*x + 1/2*e)^3 + 100*c^3*tan(1
/2*f*x + 1/2*e)^2 + 50*c^3*tan(1/2*f*x + 1/2*e) + 13*c^3)/(a^3*(tan(1/2*f*x + 1/2*e) + 1)^5))/f

________________________________________________________________________________________

Mupad [B]
time = 8.94, size = 200, normalized size = 1.94 \begin {gather*} \frac {c^3\,\left (e+f\,x\right )+\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (5\,c^3\,\left (e+f\,x\right )-\frac {c^3\,\left (75\,e+75\,f\,x+200\right )}{15}\right )-\frac {c^3\,\left (15\,e+15\,f\,x+52\right )}{15}+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (5\,c^3\,\left (e+f\,x\right )-\frac {c^3\,\left (75\,e+75\,f\,x+60\right )}{15}\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (10\,c^3\,\left (e+f\,x\right )-\frac {c^3\,\left (150\,e+150\,f\,x+120\right )}{15}\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (10\,c^3\,\left (e+f\,x\right )-\frac {c^3\,\left (150\,e+150\,f\,x+400\right )}{15}\right )}{a^3\,f\,{\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+1\right )}^5}-\frac {c^3\,x}{a^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c*sin(e + f*x))^3/(a + a*sin(e + f*x))^3,x)

[Out]

(c^3*(e + f*x) + tan(e/2 + (f*x)/2)*(5*c^3*(e + f*x) - (c^3*(75*e + 75*f*x + 200))/15) - (c^3*(15*e + 15*f*x +
 52))/15 + tan(e/2 + (f*x)/2)^4*(5*c^3*(e + f*x) - (c^3*(75*e + 75*f*x + 60))/15) + tan(e/2 + (f*x)/2)^3*(10*c
^3*(e + f*x) - (c^3*(150*e + 150*f*x + 120))/15) + tan(e/2 + (f*x)/2)^2*(10*c^3*(e + f*x) - (c^3*(150*e + 150*
f*x + 400))/15))/(a^3*f*(tan(e/2 + (f*x)/2) + 1)^5) - (c^3*x)/a^3

________________________________________________________________________________________